(本小题满分12分)已知函数 。(Ⅰ)求函数的最小正周期;(Ⅱ)求函数的单调递增区间,并写出对称轴方程.
设函数(Ⅰ)求的单调区间;(Ⅱ)证明:当时,;(Ⅲ)证明:当,且…,,时,(1)…(2) ….
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,直线与椭圆C相交于A、B两点.(Ⅰ)求椭圆C的方程;(Ⅱ)求的取值范围;(Ⅲ)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.
如图,从边长为的正方形铁皮的四个角各截去一个边长为的小正方形,再将四边向上折起,做成一个无盖的长方体铁盒,且要求长方体的高度与底面正方形的边长的比不超过常数,问:取何值时,长方体的容积V有最大值?
如图,四边形ABCD是直角梯形,∠ABC=∠BAD=90°,SA⊥平面ABCD, SA=AB=BC=2,AD=1.(Ⅰ)求SC与平面ASD所成的角余弦;(Ⅱ)求平面SAB和平面SCD所成角的余弦.
已知,试证:;并求函数()的最小值.