(本小题满分12分)已知命题在[-1,1]上有解,命题q:只有一个实数x满足:(I)若的图象必定过两定点,试写出这两定点的坐标.(只需写出两点坐标即可,不要过程); (Ⅱ)若命题“p或q”为假命题,求实数a 的取值范围。
设函数,且关于x的不等式的解集为,(1)求b的值;(2)解关于x的不等式().
已知,,且,,(1)求,;(2)求()与的夹角.
(本题满分15分) 已知直线l1:x=my与抛物线C:y2=4x交于O (坐标原点),A两点,直线l2:x=my+m 与抛物线C交于B,D两点. (Ⅰ) 若 | BD | = 2 | OA |,求实数m的值;(Ⅱ) 过A,B,D分别作y轴的垂线,垂足分别为A1,B1,D1.记S1,S2分别为三角形OAA1和四边形BB1D1D的面积,求的取值范围.
(本题满分15分) 已知实数a满足1<a≤2,设函数f (x)=x3-x2+ax.(Ⅰ) 当a=2时,求f (x)的极小值;(Ⅱ) 若函数g(x)=4x3+3bx2-6(b+2)x (b∈R) 的极小值点与f (x)的极小值点相同,求证:g(x)的极大值小于等于10.
(本题满分14分) 如图,在三棱柱BCD-B1C1D1与四棱锥A-BB1D1D的组合体中,已知BB1⊥平面BCD,四边形ABCD是平行四边形,∠ABC=120°,AB=,AD=3,BB1=1.(Ⅰ) 设O是线段BD的中点,求证:C1O∥平面AB1D1;(Ⅱ) 求直线AB1与平面ADD1所成的角.