(本题满分15分) 已知实数a满足1<a≤2,设函数f (x)=x3-x2+ax.(Ⅰ) 当a=2时,求f (x)的极小值;(Ⅱ) 若函数g(x)=4x3+3bx2-6(b+2)x (b∈R) 的极小值点与f (x)的极小值点相同,求证:g(x)的极大值小于等于10.
(本小题满分12分)如图三棱柱中,底面侧面为等边三角形,且AB=BC,三棱锥的体积为 (I)求证:; (II)求直线与平面BAA1所成角的正弦值.
(本小题满分12分)设是单调递增的等差数列,为其前n项和,且满足是的等比中项. (I)求数列的通项公式; (II)是否存在,使?说明理由; (III)若数列满足求数列的通项公式.
(本小题满分12分) 已知向量且满足 (I)求函数的单调递增区间; (II)设的内角A满足且,求边BC的最小值.
(本小题满分10分) 已知整数≥4,集合的所有3个元素的子集记为. (1)当时,求集合中所有元素之和. (2)设为中的最小元素,设=,试求.
(本小题满分10分) 如图所示,在棱长为2的正方体中,点分别在棱上,满足, 且. (1)试确定、两点的位置. (2)求二面角大小的余弦值.