(本题满分15分) 已知实数a满足1<a≤2,设函数f (x)=x3-x2+ax.(Ⅰ) 当a=2时,求f (x)的极小值;(Ⅱ) 若函数g(x)=4x3+3bx2-6(b+2)x (b∈R) 的极小值点与f (x)的极小值点相同,求证:g(x)的极大值小于等于10.
(本小题满分12分) 设函数 (1)求函数的单调区间; (2)若当时,不等式恒成立,求实数的取值范围; (3)若关于的方程在区间上恰好有两个相异的实根,求实数的取值范围。
(本小题满分11分)已知,; (1)试由此归纳出当时相应的不等式; (2)试用数学归纳法证明你在第(1)小题得到的不等式.
(本小题满分11分)已知在的展开式中,第6项为常数项. (1)求n;(2)求含x2的项的系数;(3)求展开式中所有的有理项.
(附加题)本题满分20分 如图,已知抛物线与圆相交于A、B、C、D四个点。 (Ⅰ)求r的取值范围(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标。
甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。 (Ⅰ)求再赛2局结束这次比赛的概率;(Ⅱ)求甲获得这次比赛胜利的概率。