(本小题满分14分)已知数列满足且(1)求;(2)数列满足,且时.证明当时, ;(3)在(2)的条件下,试比较与4的大小关系.
一个袋中装有5个形状大小完全相同的球,其中有2个红球,3个白球. (1)从袋中随机取两个球,求取出的两个球颜色不同的概率; (2)从袋中随机取一个球,将球放回袋中,然后再从袋中随机取一个球,求两次取出的球中至少有一个红球的概率.
已知函数. (1)求的最小正周期及对称轴方程; (2)在△ABC中,角A,B,C的对边分别为a,b,c,若,bc=6,求a的最小值.
已知函数. (1)当时,求函数在点(1,1)处的切线方程; (2)若在y轴的左侧,函数的图象恒在的导函数图象的上方,求k的取值范围; (3)当k≤-l时,求函数在[k,l]上的最小值m。
已知椭圆(a>b>0)经过点M(,1),离心率为. (1)求椭圆的标准方程; (2)已知点P(,0),若A,B为已知椭圆上两动点,且满足,试问直线AB是否恒过定点,若恒过定点,请给出证明,并求出该定点的坐标;若不过,请说明理由.
已知等差数列{an}的前n项和为Sn,S7=49,a4和a8的等差中项为2. (1)求an及Sn; (2)证明:当n≥2时,有.