如图,椭圆:()和圆:,已知圆将椭圆的长轴三等分,且,椭圆的下顶点为,过坐标原点且与坐标轴不重合的任意直线与圆相交于点、. (1)求椭圆的方程; (2)若直线、分别与椭圆相交于另一个交点为点、. ①求证:直线经过一定点;
y
②试问:是否存在以为圆心,为半径的圆,使得直线和直线都与圆相交?若存在,请求出所有的值;若不存在,请说明理由.
已知数列中,.(1)设,求数列的通项公式;(2)求使不等式成立的的取值范围.
已知点,椭圆E:的离心率为;F是椭圆E的下焦点,直线AF的斜率为,O为坐标原点。(1)求E的方程;(2)设过点A的动直线与E 相交于M,N两点,当的面积最大时,求的直线方程.
在△ABC中,角A,B,C所对的边分别为,b,c,且,=1,b=2.(1)求∠C和边c;(2)若,,且点P为△BMN内切圆上一点,求的最值.
已知函数(为常数)。(1)若是函数的一个极值点,求的值;(2)当时,试判断的单调性;(3)若对任意的 存在,使不等式恒成立,求实数的取值范围.
设公差不为0的等差数列, 恰好是等比数列的前三项,。(1)求数列、的通项公式;(2)记数列的前n项和为,若对任意的, 恒成立,求实数的取值范围.