已知定义在实数集上的奇函数(、)过已知点.(Ⅰ)求函数的解析式;(Ⅱ)试证明函数在区间是增函数;若函数在区间(其中)也是增函数,求的最小值;(Ⅲ)试讨论这个函数的单调性,并求它的最大值、最小值,在给出的坐标系(见答题卡)中画出能体现主要特征的图简;(Ⅳ)求不等式的解集.
已知函数在(0,1)内是增函数. (1)求实数的取值范围; (2)若,求证:.
数列的首项,前项和为,满足关系(,,3,4…) (1)求证:数列为等比数列; (2)设数列的公比为,作数列,使,.(,3,4…)求 (3)求…的值
() (1)求的定义域; (2)问是否存在实数、,当时,的值域为,且若存在,求出、的值,若不存在,说明理由.
已知函数(,) (1)求的值域; (2)若,且的最小值为,求的递增区间.
已知偶函数满足:当时,, 当时, (1) 求当时,的表达式; (2) 试讨论:当实数满足什么条件时,函数有4个零点, 且这4个零点从小到大依次构成等差数列.