已知定义在实数集上的奇函数(、)过已知点.(Ⅰ)求函数的解析式;(Ⅱ)试证明函数在区间是增函数;若函数在区间(其中)也是增函数,求的最小值;(Ⅲ)试讨论这个函数的单调性,并求它的最大值、最小值,在给出的坐标系(见答题卡)中画出能体现主要特征的图简;(Ⅳ)求不等式的解集.
(本小题满分12分)已知数列满足 (Ⅰ)求数列的通项公式; (Ⅱ)若数列满足,证明:是等差数列; (Ⅲ)证明:
(本小题10分)已知向量=(1+cosB,sinB)且与向量=(0,1)所成的角为,其中A、B、C为ΔABC的三个内角。 (1)求角B的大小;(2)若AC=,求ΔABC周长的最大值。
(本小题满分14分)椭圆E的中心在原点O,焦点在x轴上,离心率,过点C(-1,0)的直线l交椭圆于A、B两点,且满足:(λ≥2)。 (1)若λ为常数,试用直线l的斜率k(k≠0)表示三角形OAB的面积; (2)若λ为常数,当三角形OAB的面积取得最大值时,求椭圆E的方程; (3)若λ变化,且λ=k2+1,试问:实数λ和直线l的斜率k(k∈R)分别为何值时,椭圆E的短半轴长取得最大值?并求出此时的椭圆方程。
关于x的方程2x2-tx-2=0的两根为函数f(x)= (1)求f(的值。 (2)证明:f(x)在[上是增函数。 (3)对任意正数x1.x2,求证:
(本小题满分14分)如图:直平行六面体ABCD-A1B1C1D1,底面ABCD是边长为2a的菱形,∠BAD=600,E为AB中点,二面角A1-ED-A为600 (I)求证:平面A1ED⊥平面ABB1A1; (II)求二面角A1-ED-C1的余弦值; (III)求点C1到平面A1ED的距离。