已知点,直线:,为平面上的动点,过点作直线的垂线,垂足为,且.(1)求动点的轨迹的方程;(2)已知圆过定点,圆心在轨迹上运动,且圆与轴交于、两点,设,,求的最大值.
如图,在平面四边形中,,分别是边上的点,且.将沿对角线折起,使平面平面,并连结.(如图2) (Ⅰ)证明:平面; (Ⅱ)证明:;(Ⅲ)求直线与平面所成角的正弦值.
数列. (1) (2)在(1)的结论下,设
已知向量,设函数。 (1)求函数 的最小正周期及时的最大值; (2)把函数的图象向左平移个单位,所得到的图象对应的函数为奇函数,求的最小值。
已知函数的定义域是且,,当时,. (1)求证:是奇函数; (2)求在区间)上的解析式; (3)是否存在正整数,使得当x∈时,不等式有解?证明你的结论.
已知一条抛物线和一个椭圆都经过点M(1,2),它们在x轴上具有相同的焦点F1,且两者的对称轴都是坐标轴,抛物线的顶点在坐标原点。 (1)抛物线的方程和椭圆方程; (2)设椭圆的另一个焦点是F2,经过F2的直线与抛物线交于P,Q两点,且满足,求m的取值范围。