(本小题满分12分)如图,三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分PC,且分别交AC、PC于D、E两点,又PB=BC,PA="A" B.(Ⅰ)求证:PC⊥平面BDE;(Ⅱ)若点Q是线段PA上任一点,求证:BD⊥DQ;(Ⅲ)求线段PA上点Q的位置,使得PC//平面BDQ.
设a≥0,在复数集C中,解方程:z+2|z|=a。
已知A(1,1)为椭圆=1内一点,F1为椭圆左焦点,P为椭圆上一动点.则|PF1|+|PA|的最大值为 ,最小值为 。
设|z|=5,|z|=2, |z-|=,求的值。
求函数的值域
已知复数z满足,求z的模的最大值、最小值。