(本小题满分10分)设全集 , 有实数根 求。
已知函数(为常数),其图象是曲线.(1)当时,求函数的单调减区间;(2)设函数的导函数为,若存在唯一的实数,使得与同时成立,求实数的取值范围;(3)已知点为曲线上的动点,在点处作曲线的切线与曲线交于另一点,在点处作曲线的切线,设切线的斜率分别为.问:是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.
如图,在平面直角坐标系中,椭圆的离心率为,直线与轴交于点,与椭圆交于、两点.当直线垂直于轴且点为椭圆的右焦点时, 弦的长为.(1)求椭圆的方程;(2)若点的坐标为,点在第一象限且横坐标为,连结点与原点的直线交椭圆于另一点,求的面积;(3)是否存在点,使得为定值?若存在,请指出点的坐标,并求出该定值;若不存在,请说明理由.
如图,在三棱锥中,底面,,且,点是的中点,且交于点.(1)求证:平面;(2)当时,求三棱锥的体积.
2015年8月12日天津发生危化品重大爆炸事故,造成重大人员和经济损失.某港口组织消防人员对该港口的公司的集装箱进行安全抽检,已知消防安全等级共分为四个等级(一级为优,二级为良,三级为中等,四级为差),该港口消防安全等级的统计结果如下表所示:
现从该港口随机抽取了家公司,其中消防安全等级为三级的恰有20家.(1)求的值;(2)按消防安全等级利用分层抽样的方法从这家公司中抽取10家,除去消防安全等级为一级和四级的公司后,再从剩余公司中任意抽取2家,求抽取的这2家公司的消防安全等级都是二级的概率.
设数列的前项和为 ,数列为等比数列,且 . (1)求数列和的通项公式; (2)设,求数列的前项和.