(本小题满分12分)如图在棱长为1正方体中,以正方体的三条棱所在直线为轴建立空间直角坐标系,(I)若点在线段上,且满足,试写出点的坐标并写出关于平面的对称点的坐标;(Ⅱ)线段中点为,求点到点的距离。
已知椭圆的中心为坐标原点,焦点在轴上,斜率为且过椭圆右焦点的直线交椭圆于两点,与共线.设为椭圆上任意一点,且,证明为定值.
已知常数,在矩形中,,,为的中点.点分别在上移动,且,为与的交点(如图).问是否存在两个定点,使点到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由.
已知椭圆的中心为坐标原点,焦点在轴上,斜率为且过椭圆右焦点的直线交椭圆于两点,与共线.求椭圆的离心率;
已知双曲线的两个焦点为,实半轴长与虚半轴长的乘积为.直线过点且与线段的夹角为且,与线段垂直平分线的交点为,线段与双曲线的交点为,且,求双曲线方程.
如图,直线交双曲线及其渐近线于,,,四点,求证:.