(本小题满分12分)已知函数.(1)求的最小正周期,并求的最小值及此时x的取值集合;(2)若,且,求的值.
已知△ABC是边长为l的等边三角形,D、E分别是AB、AC边上的点,AD = AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到三棱锥A-BCF,其中.(1)证明:DE∥平面BCF;(2)证明:CF⊥平面ABF;(3)当时,求三棱锥F-DEG的体积V.
已知各项都不相等的等差数列{an}的前六项和为60,且a6为a1和a21 的等比中项.(1)求数列{an}的通项公式an及前n项和Sn;(2)若数列{bn}满足,b1 = 3,求数列的前n项和Tn.
某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形休闲区A1B1C1D1和环公园人行道(阴影部分)组成.已知休闲区A1B1C1D1的面积为4000m2,人行道的宽分别为4m和10m(如图所示).(1)若设休闲区的长和宽的比,求公园ABCD所占面积S关于x的函数解析式;(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽应如何设计?
某旅游景点有一座风景秀丽的山峰,游客可以乘长为3km的索道AC上山,也可以沿山路BC上山,山路BC中间有一个距离山脚B为1km的休息点D.已知∠ABC = 120°,∠ADC = 150°.假设小王和小李徒步攀登的速度为每小时1.2km,请问:两位登山爱好者能否在2个小时内徒步登上山峰(即从B点出发到达C点).
已知,求的值.