(本小题满分12分)如下图,某地一天从时到时的温度变化曲线近似满足函数 ,.(1)写出这段曲线的函数的解析式;(2)当时,若函数是偶函数,求实数的最小值.
(本小题满分12分) 已知函数,. (1)当时,求的单调区间与最值; (2)若在定义域R内单调递增,求的取值范围.
(本小题满分12分) △中,D为BC边上一点,,求AD.
(本小题满分12分) 在直三棱柱中, AC=4,CB=2,AA1=2,,E、F分别是的中点。 (1)证明:平面平面; (2)证明:平面ABE; (3)设P是BE的中点,求三棱锥的体积。
(本小题满分10分) 已知向量设函数 (1)求的最小正周期与单调递减区间; (2)在△ABC中分别是角A、B、C的对边,若△ABC的面积为,求的值.
.(本题满分12分) 已知四棱锥的底面为直角梯形,//,,底面,且. (1)证明:平面; (2)求二面角的余弦值的大小.