(本小题满分12分)已知函数,.(Ⅰ) 求函数在点(1,)处的切线方程;(II) 若函数与在区间上均为增函数,求的取值范围;(Ⅲ) 若方程有唯一解,试求实数的值.
已知等差数列{an}中,首项a1=1,公差d为整数,且满足a1+3<a3,a2+5>a4,数列{bn}满足,其前n项和为Sn.(1)求数列{an}的通项公式an;(2)若S2为S1,Sm(m∈N*)的等比中项,求m的值.
在△ABC中,已知,,求的值.
已知函数,,其中m∈R. (1)若0<m≤2,试判断函数f (x)=f1 (x)+f2 (x)的单调性,并证明你的结论; (2)设函数 若对任意大于等于2的实数x1,总存在唯一的小于2的实数x2,使得g (x1) = g (x2) 成立,试确定实数m的取值范围.
某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交a元(1≤a≤3)的管理费,预计当每件商品的售价为元(8≤x≤9)时,一年的销售量为(10-x)2万件.(1)求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x)(销售一件商品获得的利润l=x-(a+4));(2)当每件商品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值M(a).
如图,四边形ABCD为矩形,平面ABCD⊥平面ABE, BE=BC,F为CE上的一点,且BF⊥平面ACE. (1)求证:AE⊥BE; (2)求证:AE∥平面BFD.