(12分)等比数列{}的前n项和为,已知成等差数列.(1)求{}的公比q;(2)若=3,求.
在平面直角坐标系O中,直线与抛物线相交于、 两点。(Ⅰ)求证:“如果直线过点,那么=”是真命题;(Ⅱ)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由。
将一颗骰子先后抛掷2次,观察向上的点数,求:(1)两数之和为6的概率;(2)两数之积是6的倍数的概率;(3)以第一次向上的点数为横坐标x、第二次向上的点数为纵坐标y的点(x, y)在直线x-y=3的下方区域的概率。
为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量。产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95),由此得到频率分布直方图,如右图。(1)请填完整表格;(2)估算众数,中位数,平均数。
设 p:实数m满足m2-4am+3a2<0,其中a<0;q:实数m满足方程为双曲线,且的必要不充分条件,求a的取值范围。
(本题12分)已知集合是同时满足下列两个性质的函数组成的集合:①在其定义域上是单调增函数或单调减函数;②在的定义域内存在区间,使得在上的值域是.(1)判断函数是否属于集合?并说明理由.若是,则请求出区间;(2)若函数,求实数的取值范围.