数列{an}的前n项和记为Sn,(1)求{an}的通项公式;(2)等差数列{bn}的各项为正,其前n项和为Tn,且,又成等比数列,求Tn
在长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=a,E,F分别为AD,CD的中点. (1)若AC1⊥D1F,求a的值; (2)若a=2,求二面角E-FD1-D的余弦值.
在平面直角坐标系xOy中,曲线y=x2-2x-3与坐标轴的交点都在圆C上. (1)求圆C的方程; (2)若直线x+y+a=0与圆C交于A,B两点,且AB=2,求实数a的值.
已知m∈R,设p:复数z1=(m-1)+(m+3)i (i是虚数单位)在复平面内对应的点在第二象限,q:复数z2=1+(m-2)i的模不超过. (1)当p为真命题时,求m的取值范围; (2)若命题“p且q”为假命题,“p或q”为真命题,求m的取值范围.
已知函数,。 (1)求函数的解析式; (2)若对于任意,都有成立,求实数的取值范围; (3)设,,且,求证:。
如图,已知点D(0,-2),过点D作抛物线:的切线l,切点A在第二象限。 (1)求切点A的纵坐标; (2)若离心率为的椭圆恰好经过A点,设切线l交椭圆的另一点为B,若设切线l,直线OA,OB的斜率为k,,①试用斜率k表示②当取得最大值时求此时椭圆的方程。