数列{an}的前n项和记为Sn,(1)求{an}的通项公式;(2)等差数列{bn}的各项为正,其前n项和为Tn,且,又成等比数列,求Tn
已知函数,.(1)是否存在实数,使不等式对于恒成立,并说明理由;(2)若至少存在一个实数,使不等式成立,求实数的取值范围.
如图,在三棱柱中,侧棱垂直于底面,,,,,分别是,的中点.(1)求证:平面平面;(2)求证:平面;(3)求三棱锥的体积.
如图,四棱锥中,底面为矩形,平面,为的中点.(1)证明:平面;(2)设,,三棱锥的体积,求到平面的距离.
已知命题:函数的值域为,命题:函数是上的减函数.若或为真命题,且为假命题,则实数的取值范围是什么?
已知动圆过定点,并且内切于定圆,求动圆圆心的轨迹方程.