B(文)设是定义在上的偶函数,当时,222233.(1)若在上为增函数,求的取值范围;(2)是否存在正整数,使的图象的最高点落在直线上?若存在,求出的值;若不存在,请说明理由.
已知椭圆和抛物线有公共焦点F(1,0), 的中心和的顶点都在坐标原点,过点M(4,0)的直线与抛物线分别相交于A,B两点. (Ⅰ)写出抛物线的标准方程; (Ⅱ)若,求直线的方程; (Ⅲ)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴长的最小值.
(本小题满分14分) 如图,三棱柱中,侧面底面,, 且,O为中点. (Ⅰ)证明:平面; (Ⅱ)求直线与平面所成角的正弦值; (Ⅲ)在上是否存在一点,使得平面,若不存在,说明理由;若存在, 确定点的位置.
(本小题满分14分) 某人上楼梯,每步上一阶的概率为,每步上二阶的概率,设该人从台阶下的平台开始出发,到达第n阶的概率为Pn. (I)求P2; (II)该人共走了5,求该人这5步共上的阶数x的数学期望.
(本小题满分14分) 已知A、B是直线图像的两个相邻交点,且 (I)求的值; (II)在锐角中,a,b,c分别是角A,B,C的对边,若 的面积为,求a的值.
若由数列“Z数列” (1)在数列,试判断数列是否为“Z数列”; (2)若数列是“Z数列”,; (3)若数列是“Z数列”,设。