已知函数(其中常数a,b∈R),是奇函数.(1)求的表达式;(2)讨论的单调性,并求在区间[1,2]上的最大值和最小值.
(本小题满分12分)如图,在中,已知在上,且又平面.(Ⅰ)求证:⊥平面;(Ⅱ)求二面角的余弦值.
(本小题满分12分)为了研究某种细菌随时间x变化,繁殖的个数,收集数据如下: (1)用天数作解释变量,繁殖个数作预报变量,作出这些数据的散点图,根据散点图判断:与y=哪一个作为繁殖的个数y关于时间x变化的回归方程类型为最佳?(给出判断即可,不必说明理由) 其中; (2)根据(1)的判断最佳结果及表中的数据,建立y关于x 的回归方程。 参考公式:
(本小题满分12分)已知函数且的解集为(Ⅰ)求k的值;(Ⅱ)若是正实数,且,求证:。
(本小题满分12分)甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2,3,4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球.(Ⅰ)若左右手各取一球,求两只手中所取的球颜色不同的概率;(Ⅱ)若左右手依次各取两球,称同一手中 两球颜色相同的取法为成功取法,记两次取球(左右手依次各取两球为两次取球)的成功取法次数为随机变量X,求X的分布列和数学期望.
(本小题满分10分)已知集合.(Ⅰ)若的充分条件,求的取值范围;(Ⅱ)若,求的取值范围.