(本小题满分12分)已知,设命题p:函数在R上单调递减,q:设函数,函数恒成立,若为假,为真,求a的取值范围.
如图,过点P(1,0)作曲线C:的切线,切点为,设点在轴上的投影是点;又过点作曲线的切线,切点为,设在轴上的投影是;………;依此下去,得到一系列点,设点的横坐标为.(1)求直线的方程;(2)求数列的通项公式;(3)记到直线的距离为,求证:时,
如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.(1)求证:DC平面ABC;(2)求BF与平面ABC所成角的正弦值;(3)求二面角B-EF-A的余弦值.
甲、乙两人在罚球线互不影响地投球,命中的概率分别为与,投中得1分,投不中得0分.(1)甲、乙两人在罚球线各投球一次,求两人得分之和的数学期望;(2)甲、乙两人在罚球线各投球二次,求甲恰好比乙多得分的概率.
的三个内角对应的三条边长分别是,且满足(1)求的值;(2)若, ,求和的值.
已知定义在实数集上的函数,,其导函数记为,(1)设函数,求的极大值与极小值;(2)试求关于的方程在区间上的实数根的个数。