(本小题满分14分)已知定义域为R的函数是奇函数.(1)求a的值;(2)判断的单调性(不需要写出理由);(3)若对任意的,不等式恒成立,求的取值范围.
设A,B分别为椭圆+=1(a>b>0)的左、右顶点,(1,)为椭圆上一点,椭圆长半轴长等于焦距. (1)求椭圆的方程; (2)设P(4,x)(x≠0),若直线AP,BP分别与椭圆相交于异于A,B的点M,N,求证:∠MBN为钝角.
已知定义域为的函数同时满足以下三个条件: ①对任意的,总有; ②; ③当,且时,成立. 称这样的函数为“友谊函数”. 请解答下列各题: (1)已知为“友谊函数”,求的值; (2)函数在区间上是否为“友谊函数”?请给出理由; (3)已知为“友谊函数”,假定存在,使得,且,求证:.
已知线段,的中点为,动点满足(为正常数). (1)建立适当的直角坐标系,求动点所在的曲线方程; (2)若,动点满足,且,试求面积的最大值和最小值.
已知过抛物线的焦点的直线交抛物线于,两点.求证: (1)为定值; (2) 为定值.
已知函数和的图像关于原点对称,且. (1)求的表达式; (2)若在上是增函数,求实数的取值范围.