(本小题满分12分)(1).记关于的不等式的解集为,不等式的解集为(Ⅰ)若,求;(Ⅱ)若,求正数的取值范围.
(本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD是矩形,已知AB = 3,AD = 2,PA = 2,,.(1)证明:AD⊥平面PAB;(2)求异面直线PC与AD所成的角的大小;(3)求二面角P—BD—A的大小.
(本小题满分13分)已知函数的导数.a,b为实数,.(1)若在区间上的最小值、最大值分别为、1,求a、b的值;(2)在 (1) 的条件下,求曲线在点P(2,1)处的切线方程.
(本小题满分13分)有A、B、C、D、E共5个口袋,每个口袋装有大小和质量均相同的4个红球和2个黑球,现每次从其中一个口袋中摸出3个球,规定:若摸出的3个球恰为2个红球和1个黑球,则称为最佳摸球组合.(1)求从口袋A中摸出的3个球为最佳摸球组合的概率;(2)现从每个口袋中摸出3个球,求恰有3个口袋中摸出的球是最佳摸球组合的概率.
(本小题满分13分)已知函数的图象按向量平移得到函数的图象.(1)求实数a、b的值;(2)设函数,求函数的单调递增区间和最值.
(本小题满分12分)数列:满足(1)设,求证是等比数列;(2)求数列的通项公式;(3)设,数列的前项和为,求证: