某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口的O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.(I)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(II)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值.
(本小题满分12分) 已知,, 且的最小正周期为. (1)求的单调递减区间. (2)求在区间上的取值范围.
(本小题12分)做投掷2颗骰子的试验,用(x,y)表示结果,其中x表示第1颗骰子出现的点数,y 表示第2颗骰子出现的点数,写出: (1)求事件“出现点数相等”的概率(2)求事件“出现点数之和大于8”的概率。
(本小题12分)某射手在一次射击训练中,射中10环,9环,8环、7环的概率分别是0.21,0.23,0.25,0.28,计算这个射手在一次射击中: (1)射中10环或7环的概率;(2)不够7环的概率。
(本小题12分) 在平面直角坐标系中,点A(-1,-2)、B(2,3)、C(-2,-1)。 (1)求以线段AB、AC为邻边的平行四边形两条对角线的长; (2)设实数t满足()·=0,求t的值。
(本小题满分15分)已知是定义在上的奇函数,当时, (1)求的解析式; (2)是否存在实数,使得当的最小值是4?如果存在,求出的值;如果不存在,请说明理由。