(本小题满分14分)已知函数(x∈R)在区间[-1,1]上是增函数.(Ⅰ)求实数a的值所组成的集合A;(Ⅱ)设关于x的方程的两实数根为x1、x2,试问:是否存在实数m,使得不等式对任意a∈A及t∈[-1,1]恒成立?若存在,求出m的取值范围;若不存在,请说明理由?
(本小题满分14分)如图所示,棱柱为正三棱柱,且,其中点分别为的中点. (1)求证:平面; (2)求证:平面; (3)求平面与平面所成的锐二面角的余弦值
(本小题满分12分)已知函数,. (1)求的最大值和取得最大值时的集合. (2)设,,,,求的值.
(本小题满分13分)已知抛物线的顶点为坐标原点,焦点为,直线与抛物线相交于两点,且线段的中点为. (Ⅰ)求抛物线的和直线的方程; (Ⅱ)若过且互相垂直的直线分别与抛物线交于求四边形面积的最小值.
(本小题满分13分)已知函数,其中是的导函数. (Ⅰ)求曲线在点处的切线方程; (Ⅱ)若在上恒成立,求实数的取值范围.
(本小题满分12分)已知数列是各项均为正数的等差数列,其中,且成等比数列;数列的前项和为,满足. (Ⅰ)求数列,的通项公式; (Ⅱ)如果,设数列的前项和为,是否存在正整数,使得成立,若存在,求出的最小值,若不存在,说明理由.