用单调性的定义证明:函数 在 上是减函数。
若不等式对任意恒成立,则的取值范围是
以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线经过点P(1,1),倾斜角.(1)写出直线的参数方程; (2)设与圆相交于两点A、B,求点P到A、B两点的距离之积.
选修4-1几何证明选讲,如图,D,E分别是AB,AC边上的点,且不与顶点重合,已知为方程的两根,(1) 证明 C,B,D,E四点共圆;(2)若,求C,B,D,E四点所在圆的半径。
已知抛物线C:y=4x,F是C的焦点,过焦点F的直线l与C交于 A,B两点,O为坐标原点。(1)求·的值;(2)设=,求△ABO的面积S的最小值;(3)在(2)的条件下若S≤,求的取值范围。
已知函数(x)=,a是正常数。(1)若f(x)= (x)+lnx,且a=,求函数f(x)的单调递增区间;(2)若g(x)=∣lnx∣+(x),且对任意的x,x∈(0,2〕,且x≠x,都有<-1,求a的取值范围