(本题15分)已知抛物线,点,点E是曲线C上的一个动点(E不在直线AB上),设,C,D在直线AB上,轴。(1)用表示在方向上的投影;(2)是否为定值?若是,求此定值,若不是,说明理由。
设函数(1)当时,在上恒成立,求实数的取值范围;(2)当时,若函数在上恰有两个不同的零点,求实数的取值范围;
已知集合,,,则的最小值是多少?
已知某几何体的直观图和三视图如下图所示, 其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(Ⅰ)证明:BN⊥平面C1B1N;(Ⅱ)设直线C1N与平面CNB1所成的角为,求sin的值;(Ⅲ)M为AB中点,在CB上是否存在一点P,使得MP∥平面CNB1,若存在,求出BP的长;若不存在,请说明理由.
已知函数,(I) 在(I)的条件下,求证:当时,恒成立(II) 若时恒成立,求的取值范围
有一个3×3×3的正方体, 它的六个面上均涂上颜色. 现将这个长方体锯成27个1×1×1的小正方体,从这些小正方体中随机地任取1个. 如每次从中任取一个小正方体,确定涂色的面数后,再放回,连续抽取6次,设恰好取到只有一个面涂有颜色的小正方体的次数为. 求的数学期望.