如图所示,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,E为AD的中点, PA=PD=4,BC=AD=2,CD=.(Ⅰ)求证:PA⊥CD;(Ⅱ)若M是棱PC的中点,求直线PB与平面BEM所成角的正弦值;(Ⅲ)在棱PC上是否存在点N,使二面角N-EB-C的余弦值为,若存在,确定点N的位置;若不存在,请说明理由.
(本题满分8分)求下列曲线的的标准方程:(1)离心率且椭圆经过.(2)渐近线方程是,经过点.
定义(1)令函数的图象为曲线c1,曲线c1与y轴交于点A(0,m),过坐标原点O作曲线c1的切线,切点为B(n,t)(n>0)设曲线c1在点A、B之间的曲线段与OA、OB所围成图形的面积为S,求S的值;(2)当
已知曲线上有一点列,点在x轴上的射影是,且,.(1)求数列的通项公式;(2)设四边形的面积是,求证:
已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.(Ⅰ)求函数f(x)的解析式; (Ⅱ)求证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4;(Ⅲ)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围.
(本小题满分14分)如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线在y轴上的截距为m(m≠0),交椭圆于A、B两个不同点。(1)求椭圆的方程;(2)求m的取值范围;(3)求证直线MA、MB与x轴始终围成一个等腰三角形。