如图所示,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,E为AD的中点, PA=PD=4,BC=AD=2,CD=.(Ⅰ)求证:PA⊥CD;(Ⅱ)若M是棱PC的中点,求直线PB与平面BEM所成角的正弦值;(Ⅲ)在棱PC上是否存在点N,使二面角N-EB-C的余弦值为,若存在,确定点N的位置;若不存在,请说明理由.
设,函数. (Ⅰ)证明:存在唯一实数,使; (Ⅱ)定义数列:,,. (i)求证:对任意正整数n都有; (ii) 当时,若, 证明:当k时,对任意都有:
已知函数(,实数,为常数). (Ⅰ)若,求函数的极值; (Ⅱ)若,讨论函数的单调性.
双曲线的中心为原点,焦点在轴上,两条渐近线分别为,经过右焦点垂直于的直线分别交于两点.已知成等差数列,且与同向. (Ⅰ)求双曲线的离心率; (Ⅱ)设被双曲线所截得的线段的长为4,求双曲线的方程.
如图,在四棱锥中,底面是矩形.已知. (Ⅰ)证明平面; (Ⅱ)求异面直线与所成的角的大小; (Ⅲ)求二面角的大小.
袋中有同样的球5个,其中3个红色, 2个黄色,现从中随机且不返回地摸球,每次摸1个,当两种颜色的球都被摸到时,即停止摸球,记随机变量为此时已摸球的次数。 (1)求随机变量的概率分布列; (2) 求随机变量的数学期望与方差。