如图所示,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,E为AD的中点, PA=PD=4,BC=AD=2,CD=.(Ⅰ)求证:PA⊥CD;(Ⅱ)若M是棱PC的中点,求直线PB与平面BEM所成角的正弦值;(Ⅲ)在棱PC上是否存在点N,使二面角N-EB-C的余弦值为,若存在,确定点N的位置;若不存在,请说明理由.
已知函数, (1)求的单调区间和极值。 (2)求在上的最大值和最小值。
已知函数f(x)=alnx-x2+1. (1)若曲线y=f(x)在x=1处的切线方程为4x-y+b=0,求实数a和b的值; (2)若a<0,且对任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范围.
三个求职者到某公司应聘,该公司为他们提供了A,B,C,D四个岗位,每人从中任选一个岗位。 (1)求恰有两个岗位没有被选的概率; (2)设选择A岗位的人数为,求的分布列及数学期望。
数列,满足 (1)求,并猜想通项公式。 (2)用数学归纳法证明(1)中的猜想。
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
(1)在给定的坐标系中画出表中数据的散点图; (2)求出y关于x的线性回归方程,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少时间? (注:)