如图,BA是⊙O的直径,AD是⊙O切线,C、E分别为半圆上不同的两点,BC交AD于D,BE交AD于F。(I) 求证:BE·BF=BC·BD。 (II) 若⊙O的半径,BC=1,求AD。
已知函数(e为自然对数的底数).(1)求函数的单调增区间;(2)设不等式的解集为M,且集合,求实数t的取值范围.
已知是内任意一点,连结并延长交对边于,,,则.这是平面几何的一个命题,其证明常常采用“面积法”: .运用类比,猜想对于空间中的四面体,存在什么类似的结论,并用“体积法”证明。
已知为实数,函数.(1) 若,求函数在[-,1]上的极大值和极小值;(2)若函数的图象上有与轴平行的切线,求的取值范围.
设函数.(1)求不等式的解集;(2)若不等式的解集是非空的集合,求实数的取值范围.
某单位要建造一个长方体无盖贮水箱,其容积为48m3,深为3m,如果池底每1m2的造价为40元,池壁每1m2的造价为20元,问怎样设计水箱能使总造价最低,最低总造价是多少元?