如图,BA是⊙O的直径,AD是⊙O切线,C、E分别为半圆上不同的两点,BC交AD于D,BE交AD于F。(I) 求证:BE·BF=BC·BD。 (II) 若⊙O的半径,BC=1,求AD。
一个口袋中有个白球和个红球且,每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖. (Ⅰ)试用含的代数式表示一次摸球中奖的概率; (Ⅱ)若,求三次摸球恰有一次中奖的概率; (Ⅲ)记三次摸球恰有一次中奖的概率为,当为何值时,取最大值.
已知向量,,,函数的最大值为. (Ⅰ)求; (Ⅱ)将函数的图像向左平移个单位,再将所得图像上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图像,求在上的值域.
给定椭圆:,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,且其短轴上的一个端点到的距离为. (Ⅰ)求椭圆的方程和其“准圆”方程; (Ⅱ)点是椭圆的“准圆”上的一个动点,过动点作直线,使得与椭圆都只有一个交点,试判断是否垂直,并说明理由.
已知函数. (Ⅰ)若在处的切线垂直于直线,求该点的切线方程,并求此时函数的单调区间; (Ⅱ)若对任意的恒成立,求实数的取值范围.
如图,在中,,,是上的高,沿把折起,使. (Ⅰ)证明:平面⊥平面; (Ⅱ)若,求三棱锥的表面积.