已知向量().向量,,且.(1) 求向量;(2) 若,,求.
已知椭圆=1(a>b>0),点P为其上一点,F1、F2为椭圆的焦点,∠F1PF2的外角平分线为l,点F2关于l的对称点为Q,F2Q交l于点R. (1)当P点在椭圆上运动时,求R形成的轨迹方程;(2)设点R形成的曲线为C,直线l: y=k(x+a)与曲线C相交于A、B两点,当△AOB的面积取得最大值时,求k的值.
已知双曲线=1(m>0,n>0)的顶点为A1、A2,与y轴平行的直线l交双曲线于点P、Q. (1)求直线A1P与A2Q交点M的轨迹方程;(2)当m≠n时,求所得圆锥曲线的焦点坐标、准线方程和离心率.
双曲线=1的实轴为A1A2,点P是双曲线上的一个动点,引A1Q⊥A1P,A2Q⊥A2P,A1Q与A2Q的交点为Q,求Q点的轨迹方程.
已知A、B、C是直线l上的三点,且|AB|=|BC|=6,⊙O′切直线l于点A,又过B、C作⊙O′异于l的两切线,设这两切线交于点P,求点P的轨迹方程.
设数列{an}的前n项和Sn=na+n(n-1)b,(n=1,2,…),a、b是常数且b≠0.(1)证明:{an}是等差数列. (2)证明:以(an,-1)为坐标的点Pn(n=1,2,…)都落在同一条直线上,并写出此直线的方程.(3)设a=1,b=,C是以(r,r)为圆心,r为半径的圆(r>0),求使得点P1、P2、P3都落在圆C外时,r的取值范围.