已知椭圆=1(a>b>0),点P为其上一点,F1、F2为椭圆的焦点,∠F1PF2的外角平分线为l,点F2关于l的对称点为Q,F2Q交l于点R. (1)当P点在椭圆上运动时,求R形成的轨迹方程;(2)设点R形成的曲线为C,直线l: y=k(x+a)与曲线C相交于A、B两点,当△AOB的面积取得最大值时,求k的值.
(本大题满分13分)对于给定数列,如果存在实常数使得对于任意都成立,我们称数列是 “线性数列”. (1)若,,,数列、是否为“线性数列”?若是,指出它对应的实常数,若不是,请说明理由; (2)证明:若数列是“线性数列”,则数列也是“线性数列”; (3)若数列满足,,为常数.求数列前项的和.
(本小题满分13分)已知为常数,且,函数的最小值和函数的最小值都是函数R的零点. (1)用含的式子表示,并求出的取值范围; (2)求函数在区间上的最大值和最小值.
【改编题】贵广高速铁路自贵阳北站起,经黔南州、黔东南、广西桂林、贺州、广东肇庆、佛山终至广州南站.其中广东省内有怀集站、广宁站、肇庆东站、三水南站、佛山西站、广州南站共6个站.记者对广东省内的6个车站的外观进行了满意度调查,得分情况如下:
已知6个站的平均得分为75分. (1)求广州南站的满意度得分x; (2)从广东省内前5个站中,随机地选2个站,求恰有1个站得分在区间(68,75)中的概率.
已知函数的部分图象如图所示,是图象的最高点,为图象与轴的交点,为坐标原点,若 (1)求函数的解析式, (2)将函数的图象向右平移2个单位后得到函数的图象,当时,求函数的值域.
如图,在边长为的菱形中,,点,分别是边,的中点,.沿将△翻折到△,连接,得到如图的五棱锥,且. (1)求证:平面; (2)求四棱锥的体积.