已知椭圆=1(a>b>0),点P为其上一点,F1、F2为椭圆的焦点,∠F1PF2的外角平分线为l,点F2关于l的对称点为Q,F2Q交l于点R. (1)当P点在椭圆上运动时,求R形成的轨迹方程;(2)设点R形成的曲线为C,直线l: y=k(x+a)与曲线C相交于A、B两点,当△AOB的面积取得最大值时,求k的值.
如图,AB是⊙O的一条切线,切点为B,ADE、CFD都是⊙O的割线,AC=AB. (1)证明:AC2=AD·AE (2)证明:FG∥AC
在中,内角所对边长分别为,,. (1)求; (2)若的面积是1,求.
设. (1)若曲线在点处的切线方程为,求的值; (2)当时,求的单调区间与极值.
在数学趣味知识培训活动中,甲、乙两名学生的5次培训成绩如下茎叶图所示: (1)从甲、乙两人中选择1人参加数学趣味知识竞赛,你会选哪位?请运用统计学的知识说明理由; (2) 从乙的5次培训成绩中随机选择2个,试求选到121分的概率.
如图,四棱锥中,底面为平行四边形,,,,是正三角形,平面平面. (1)求证:; (2)求三棱锥的体积.