已知数列的首项为=3,通项与前n项和之间满足2=·(n≥2)。(1)求证:是等差数列,并求公差;(2)求数列的通项公式。
已知圆满足以下三个条件:(1)圆心在直线上,(2)与直线相切,(3)截直线所得弦长为6。求圆的方程。
求通过两条直线和的交点,且距原点距离为1的直线方程。
已知定义域为的函数是奇函数.(Ⅰ)求实数的值;(Ⅱ)判断函数的单调性;(Ⅲ)若对任意的,不等式恒成立,求的取值范围.
已知圆C经过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为4,半径小于5.(Ⅰ)求直线PQ与圆C的方程;(Ⅱ)若直线l∥PQ,直线l与圆C交于点A,B且以线段AB为直径的圆经过坐标原点,求直线l的方程.
设数列的前项和为,,. (Ⅰ)求数列的通项公式;(Ⅱ)设是数列的前项和,求.