已知数列的首项为=3,通项与前n项和之间满足2=·(n≥2)。(1)求证:是等差数列,并求公差;(2)求数列的通项公式。
某社区举办防控甲型H7N9流感知识有奖问答比赛,甲、乙、丙三人同时回答一道卫生知识题,三人回答正确与错误互不影响.已知甲回答这题正确的概率是,甲、丙两人都回答错误的概率是,乙、丙两人都回答正确的概率是.(1)求乙、丙两人各自回答这道题正确的概率;(2)用ξ表示回答该题正确的人数,求ξ的分布列和数学期望Eξ.
已知数列{an}满足,n∈N*.(1)求数列{an}的通项公式;(2)设bn=(2n﹣1)an,求数列{bn}的前n项和Sn.
在△ABC中,已知角A、B、C的对边分别为a、b、c.向量=(cosB,cosC),=(b,2a﹣c)且向量与共线.(1)求cosB的值;(2)若b=,求△ABC的面积的最大值.
已知函数,其中a,b∈R(1)当a=3,b=-1时,求函数f(x)的最小值;(2)若曲线y=f(x)在点(e,f(e))处的切线方程为2x-3y-e=0(e=2.71828 为自然对数的底数),求a,b的值;(3)当a>0,且a为常数时,若函数h(x)=x[f(x)+lnx]对任意的x1>x2≥4,总有成立,试用a表示出b的取值范围.
已知椭圆Γ:(a>b>0)经过D(2,0),E(1,)两点.(1)求椭圆Γ的方程;(2)若直线与椭圆Γ交于不同两点A,B,点G是线段AB中点,点O是坐标原点,设射线OG交Γ于点Q,且.①证明:②求△AOB的面积.