(本小题满分12分)函数f(x)对任意的实数m,n,有f(m+n)=f(m)+f(n),当x>0时,有f(x)>0。①求证:②求证:f(x)在(-∞,+∞)上为增函数.③若f(1)=1,解不等式f(4x-2x)<2.
设函数f(x)=|2x﹣1|﹣|x+2|. (Ⅰ)解不等式f(x)>0; (Ⅱ)若∃x0∈R,使得f(x0)+2m2<4m,求实数m的取值范围.
定义在R上的单调函数满足,且对任意,都有. (1)求证为奇函数; (2)若对任意恒成立,求实数k的取值范围.
已知函数. (I)若,试比较与的大小; (Ⅱ)若函数,且在区间上没有零点,求实数m的取值范围.
为了预防甲型H1N1流感,某学校对教室用药薰消毒法进行消毒,已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与t时间(小时)成正比,药物释放完毕后,y与t之间的函数关系式为(a为常数)如下图所示,根据图中提供的信息,回答下列问题. (1)从药物释放开始,求每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式; (2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始至少需要经过多少小时后,学生才可能回到教室.
已知函数是二次函数,且满足, (1)求的解析式; (2)若,试将的最大值表示成关于t的函数.