(本小题满分12分)已知各项均为正数的数列满足:(I)求的值,猜测的表达式并给予证明;(II)求证:(III)设数列的前n项和为
设,在处取得极大值,且存在斜率为的切线。 (1)求的取值范围; (2)若函数在区间上单调递增,求的取值范围; (3)是否存在的取值使得对于任意,都有。
如图,四棱锥中,底面是边长为2的正方形,,,与底面所成的角的正切值为,为中点. (1) 求二面角的大小. (2) 在线段上是否存在点,使得点到平面的距离为.若存在,确定点的位置;若不存在,请说明理由.
已知数列(1)若的通项; (2)若在时恒成立,求实数t的取值范围。
先后2次抛掷一枚骰子,将得到的点数分别记为. (1)求直线与圆相切的概率; (2)将的值分别作为三条线段的长,试列举出这三条线段能围成等腰三角形的所有情形并求其概率.
在中,内角A、B、C所对的边分别为,其外接圆半径为6, (1)求; (2)求的面积的最大值。