为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求的值及的表达式;(Ⅱ)隔热层修建多厚对,总费用达到最小,并求最小值.
已知某地今年年初拥有居民住房的总面积为(单位:m2),其中有部分旧住房需要拆除。当地有关部门决定每年以当年年初住房面积的10%建设新住房,同时也拆除面积为b(单位:m2)的旧住房。 (1)分别写出第一年末和第二年末的实际住房面积的表达式; (2)如果第五年末该地的住房面积正好比今年年初的住房面积增加了30%,则每年拆除的旧住房面积b是多少?(计算时取1.15=1.6)
已知函数, (1)解关于x的不等式f (x) > 0; (2)若上恒成立,求a的取值范围。
已知数列的通项。 (1)当为何值时,前项的和有最小值,并求出这个最小值。 (2)数列前项和为,求。
在中,a、b、c分别是角A、B、C的对边,且。 (1)求角B的大小; (2)若,求的面积。
已知,,且. (1)求的值; (2)求.