(本小题满分14分)已知二次函数, 满足且的最小值是.(Ⅰ)求的解析式;(Ⅱ)设直线,若直线与的图象以及轴这二条直线和一条曲线所围成封闭图形的面积是, 直线与的图象以及直线这二条直线和一条曲线所围成封闭图形的面积是,已知,当取最小值时,求的值.
佛山某学校的场室统一使用“佛山照明”的一种灯管,已知这种灯管使用寿命(单位:月)服从正态分布,且使用寿命不少于个月的概率为,使用寿命不少于个月的概率为. (1)求这种灯管的平均使用寿命; (2)假设一间功能室一次性换上支这种新灯管,使用个月时进行一次检查,将已经损坏的灯管换下(中途不更换),求至少两支灯管需要更换的概率.
如图,三棱锥中,底面,,,为的中点,点在上,且. (1)求证:平面平面; (2)求平面与平面所成的二面角的平面角(锐角)的余弦值.
在△中,角、、的对边分别为,满足,且. (1)求的值; (2)若,求△的面积.
已知函数,是的一个极值点. (Ⅰ)求的单调递增区间; (Ⅱ)当时,求方程的解的个数.
已知椭圆的两焦点为,,离心率. (1)求此椭圆的方程; (2)设直线,若与此椭圆相交于,两点,且等于椭圆的短轴长,求的值;