(本小题满分14分)已知二次函数, 满足且的最小值是.(Ⅰ)求的解析式;(Ⅱ)设直线,若直线与的图象以及轴这二条直线和一条曲线所围成封闭图形的面积是, 直线与的图象以及直线这二条直线和一条曲线所围成封闭图形的面积是,已知,当取最小值时,求的值.
在中,,,分别是角的对边.已知,. (1)若,求角的大小; (2)若,求边的长.
已知,是函数的两个零点,其中常数,,设. (Ⅰ)用,表示,; (Ⅱ)求证:; (Ⅲ)求证:对任意的.
已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为. (Ⅰ)求椭圆的标准方程; (Ⅱ)是否存在与椭圆交于两点的直线:,使得成立?若存在,求出实数的取值范围,若不存在,请说明理由.
已知函数,. (Ⅰ)若曲线在点处的切线与直线垂直,求的值; (Ⅱ)求函数的单调区间; (Ⅲ)设,当时,都有成立,求实数的取值范围.
如图,在四棱锥中,底面是正方形,侧面底面,,分别为,中点,. (Ⅰ)求证:∥平面; (Ⅱ)求二面角的余弦值; (Ⅲ)在棱上是否存在一点,使平面?若存在,指出点的位置;若不存在,说明理由.