(本小题满分12分)在四棱锥P—ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2。(Ⅰ)求证:BE∥平面PAD;(Ⅱ)求证:BC⊥平面PBD;(Ⅲ)设Q为侧棱PC上一点,试确定的值,使得二面角Q—BD—P为45°。
(本小题满分10分)选修4-1:几何证明选讲如图,已知ABC中的两条角平分线和相交于,B=60,在上,且。 (Ⅰ)证明:四点共圆;(Ⅱ)证明:CE平分DEF。
(本小题满分12分)已知函数.(I)求函数f(x)的单调区间;(Ⅱ)若不等式对任意的都成立(其中e是自然对数的底数),求a的最大值。
(本小题满分12分)已知定点,B是圆(C为圆心)上的动点,AB的垂直平分线与BC交于点E。(1)求动点E的轨迹方程;(2)设直线与E的轨迹交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:OPQ面积的最大值及此时直线的方程。
(本小题满分12分)(理科)如图,四边形为矩形,四边形为梯形,平面平面,,,.(Ⅰ)若为中点,求证:平面;(Ⅱ)求平面与所成锐二面角的大小.
(本小题满分12分)
表1 甲系列
表2 乙系列