(本小题满分12分)在四棱锥P—ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2。(Ⅰ)求证:BE∥平面PAD;(Ⅱ)求证:BC⊥平面PBD;(Ⅲ)设Q为侧棱PC上一点,试确定的值,使得二面角Q—BD—P为45°。
袋中装有大小相同的10个球,其中5个白球,3个红球,2个黑球,现在依次从中取出3个球。(Ⅰ)求取出的3个球不是同一种颜色的概率;(Ⅱ)求取出的3个球中所含红球的个数的分布列及期望。
已知,且. 求:的最大值,并求出相应的的值.
设函数(其中>0,),且的图象在y轴右侧的第一个高点的横坐标为.(1)求的值;(2)如果在区间上的最小值为,求a的值.
设函数是定义在区间上以2为周期的函数,记.已知当时,,如图. (1)求函数的解析式; (2)对于,求集合.
(本小题14分)已知函数在一个周期内的图象下图所示。(1)求函数的解析式;(2)设,且方程有两个不同的实数根,求实数m的取值范围和这两个根的和。