(本小题满分12分)在四棱锥P—ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2。(Ⅰ)求证:BE∥平面PAD;(Ⅱ)求证:BC⊥平面PBD;(Ⅲ)设Q为侧棱PC上一点,试确定的值,使得二面角Q—BD—P为45°。
(本小题满分12分)编号分别为A1,A2, ,A16的16名校篮球运动员在某次训练比赛中的得分记录如下:
(1)将得分在对应区间内的人数填入相应的空格:
(2)从得分在区间[20,30)内的运动员中随机抽取2人,①用运动员编号列出所有可能的抽取结果;②求这2人得分之和大于50的概率.
设函数. (1)若函数在上为减函数,求实数的最小值; (2)若存在,使成立,求实数的取值范围.
已知离心率为的椭圆的右焦点F是圆的圆心,过椭圆上的动点P作圆的两条切线分别交y轴于M,N(与P点不重合)两点. (1)求椭圆方程; (2)求线段MN长的最大值,并求此时点P的坐标.
已知数列中, (1)求证:数列是等比数列; (2)若是数列的前n项和,求满足的所有正整数n.
如图,在四棱锥中,平面,底面是菱形,,为与的交点, 为上任意一点. (Ⅰ)证明:平面平面; (Ⅱ)若平面,并且二面角的大小为,求的值.