(本题满分12分)已知函数图象上斜率为3的两条切线间的距离为,函数。(1)若函数在处有极值,求的解析式;(2)若函数在区间[-1,1]上为增函数,且在时恒成立,求实数的取值范围。
已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4. (1)求椭圆的方程; (2)设直线与椭圆相交于不同的两点A,B。已知点A的坐标为。若,求直线的倾斜角。
已知曲线,求曲线过点的切线方程。
解关于x的不等式其中.
在△ABC中,角A、B、C的对边分别为a、b、c,. (1)求cosC;(2)若
已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1. (Ⅰ)求椭圆C的标准方程; (Ⅱ)若直线l:与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点。求证: 直线l过定点,并求出该定点的坐标.