(本小题满分14分)已知为坐标原点,点F、T、M、P分别满足. (1) 当t变化时,求点P的轨迹方程; (2) 若的顶点在点P的轨迹上,且点A的纵坐标,的重心恰好为点F,求直线BC的方程.
在数列中,时,其前项和满足:.(Ⅰ)求证:数列是等差数列,并用表示;(Ⅱ)令,数列的前项和为求使得对所有都成立的实数的取值范围.
已知.(Ⅰ)若的定义域为,求的值域;(Ⅱ)在中,分别是所对边, 当,时,求的最小值.
(本小题满分14分) 已知函数(Ⅰ)求函数的定义域,并证明在定义域上是奇函数;(Ⅱ)对于恒成立,求实数的取值范围;(Ⅲ)当时,试比较与的大小关系.
(本小题满分13分)已知椭圆C:的离心率为,以原点O为圆心,椭圆的短半轴长为半径的圆与直线相切(Ⅰ)求椭圆C的标准方程(Ⅱ)若直线L:与椭圆C相交于A、B两点,且,求证:的面积为定值
已知数列满足:,.数列的前项和为,.(Ⅰ)求数列,的通项公式;(Ⅱ)设,.求数列的前项和.