已知数列的前n项和(),数列.(Ⅰ)求证:数列是等差数列,并求数列的通项公式;(Ⅱ)设数列的前n项和为,证明:且时,;(Ⅲ)设数列满足,(为非零常数,),问是否存在整数,使得对任意 ,都有?
已知函数是定义在R上的偶函数,且当时,. (1)现已画出函数在y轴左侧的图象,如图所示,请补出完整函数的图象,并根据图象写出函数的增区间; (2)求出函数的解析式和值域.
已知函数的图象过点. (1)求的值; (2)若,,求的值.
已知函数. (1)当时,求函数的极值; (2)若函数在区间上是减函数,求实数a的取值范围; (3)当时,函数图象上的点都在所表示的平面区域内,求实数a的取值范围.
在锐角中,、、分别为角所对的边,且. (Ⅰ)确定角的大小; (Ⅱ)若=, 且的面积为, 求的值.
某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者从装有个红球、个蓝球、6个白球的袋中任意摸出4个球.根据摸出个球中红球与蓝球的个数,设一、二、三等奖如下:
其余情况无奖且每次摸奖最多只能获得一个奖级. (1)求一次摸奖恰好摸到1个红球的概率; (2)求摸奖者在一次摸奖中获奖金额的分布列与期望.