(本小题满分13分)已知,,f(x)=⑴ 求f(x)的最小正周期和单调增区间;⑵ 如果三角形ABC中,满足f(A)=,求角A的值.
如图,四面体ABCD中,O、E分别是BD、BC的中点, (I)求证:平面BCD; (II)求异面直线AB与CD所成角的余弦值; (III)求点E到平面ACD的距离。
设函数 (1)设的内角,且为钝角,求的最小值; (2)设是锐角的内角,且求的三个内角的大小和AC边的长。
一个多面体的直观图和三视图如下:(其中分别是中点) (1)求证:平面; (2)求多面体的体积.
设分别是椭圆的左,右焦点。 (1)若是第一象限内该椭圆上的一点,且·=求点的坐标。 (2)设过定点的直线与椭圆交于不同的两点,且为锐角(其中O为坐标原点),求直线的斜率的取值范围。
已知:数列{an}的前n项和为Sn,满足Sn=2an-2n(n∈N*) (1)求数列{an}的通项公式an; (2)若数列{bn}满足bn=log2(an+2),而Tn为数列的前n项和,求Tn.