(本小题满分12分)已知函数,直线l与函数的图象都相切,且l与函数的图象的切点的横坐标为1。(1)求直线l的方程以及a的值;(2)若的单调递增区间.
(本小题满分12分)一艘船每小时的燃料费与船的速度的平方成正比,如果此船速度是10km/h,那么每小时的燃料费是80元.已知船航行时其他费用为500元/时,在100 km航程中,航速多少时船行驶总费用最少?此时总费用多少元?
(本小题满分14分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC.E是PC的中点,作EF⊥PB交PB于点F.(1)求证:PA//平面EDB;(2)求证:PF=PB;(3)求二面角C-PB-D的大小.
(本小题满分14分)已知是等差数列,,.(1)求数列的通项公式;(2)对一切正整数,设,求数列的前项和.
(本小题满分12分)已知函数,.(1)求的最小正周期和最大值;(2)若,求的值.
(本小题满分15分)已知函数,(1)若a=1,试判断并用定义证明函数f(x)在[1,4]上的单调性;(2)当时,求函数f(x)的最大值的表达式M(a);(3)是否存在实数a,使得f(x)=3有且仅有3个不等实根,且它们成等差数列,若存在,求出所有a的值,若不存在,说明理由.