(本小题满分12分)在直角坐标平面上有一点列 对一切正整数n,点Pn在函数的图象上,且Pn的横坐标构成以为首项,-1为公差的等差数列{xn}.(1)求点Pn的坐标;(2)设抛物线列C1,C2,C3,…,Cn,…中的每一条的对称轴都垂直于x轴,抛物线Cn的顶点为Pn,且过点Dn(0,).记与抛物线Cn相切于点Dn的直线的斜率为kn,求(3)设等差数列的任一项,其中是中的最大数,,求数列的通项公式.
设集合,(1)若,求实数的取值范围;(2)当时,没有元素使得与同时成立,求实数的取值范围。
(本小题满分13分)已知函数(1)求函数的最小正周期;(2)求使函数取得最大值的集合。
已知函数(1)当时,求的极值(2)当时,求的单调区间(3)若对任意的,恒有成立,求实数的取值范围。
椭圆的离心率为,长轴的端点与短轴的端点间的距离为(1)求椭圆的方程(2)设过点的直线与椭圆交于两点,为坐标原点,若△为直角三角形,求直线的斜率。
口袋里装有大小相同的卡片八张,其中三张标有数字1,三张标有数字2,二张标有数字3,第一次从口袋里任里任意抽取一张,放回口袋里后第二次再任意抽取一张,记第一次与第二次取到卡片上数字之和为.(1)为何值时,其发生的概率最大?说明理由; (2)求随机变量的期望.