(本小题满分12分)在直角坐标平面上有一点列 对一切正整数n,点Pn在函数的图象上,且Pn的横坐标构成以为首项,-1为公差的等差数列{xn}.(1)求点Pn的坐标;(2)设抛物线列C1,C2,C3,…,Cn,…中的每一条的对称轴都垂直于x轴,抛物线Cn的顶点为Pn,且过点Dn(0,).记与抛物线Cn相切于点Dn的直线的斜率为kn,求(3)设等差数列的任一项,其中是中的最大数,,求数列的通项公式.
(本小题满分14分)在如图所示的几何体中,,,是的中点,,,. (Ⅰ)求证:; (Ⅱ)求证:; (Ⅲ) 求三棱锥的体积.
(本小题满分13分)已知数列的前项和为,且(其中是不为零的常数),. (Ⅰ)证明:数列是等比数列; (Ⅱ)当=1时,数列求数列的通项公式.
(本小题满分13分) 某大学志愿者协会有10名同学,成员构成如下表,其中表中部分数据不清楚,只知道从这10名同学中随机抽取一位,抽到该名同学为“数学专业”的概率为.
(Ⅰ)求的值; (Ⅱ)现从男同学中随机选取2名同学,进行社会公益活动(每位同学被选到的可能性相同),求选出的这2名男同学中至少有一位同学是“数学专业”的概率.
(本小题满分13分)在中,角所对的三边分别为,,且 (Ⅰ)求; (Ⅱ)求的面积.
(本小题满分13分)如图,在一个可以向下和向右方无限延伸的表格中,将正偶数按已填好的各个方格中的数字显现的规律填入各方格中.其中第行,第列的数记作,,如.
(Ⅰ)写出的值; (Ⅱ)若求的值;(只需写出结论) (Ⅲ)设,(), 记数列的前项和为,求;并求正整数,使得对任意,均有.