(本小题满分12分)在直角坐标平面上有一点列 对一切正整数n,点Pn在函数的图象上,且Pn的横坐标构成以为首项,-1为公差的等差数列{xn}.(1)求点Pn的坐标;(2)设抛物线列C1,C2,C3,…,Cn,…中的每一条的对称轴都垂直于x轴,抛物线Cn的顶点为Pn,且过点Dn(0,).记与抛物线Cn相切于点Dn的直线的斜率为kn,求(3)设等差数列的任一项,其中是中的最大数,,求数列的通项公式.
设函数f(x)=x+ax2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2. (1)求a,b的值; (2)证明:f(x)≤2x-2.
双曲线=1(a>0,b>0)的离心率为2,坐标原点到直线AB的距离为,其中A(0,-b),B(a,0). (1)求双曲线的标准方程; (2)设F是双曲线的右焦点,直线l过点F且与双曲线的右支交于不同的两点P、Q,点M为线段PQ的中点.若点M在直线x=-2上的射影为N,满足·=0,且||=10,求直线l的方程.
直棱柱ABCD—A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2. (1)求证:平面ACB1⊥平面BB1C1C; (2)在A1B1上是否存在一点P,使得DP与平面ACB1平行?证明你的结论.
△ABC的内角A、B、C的对边分别为a,b,c,asin A+csin C-asin C=bsin B. (1)求B; (2)若A=75°,b=2,求a,c.
以下茎叶图记录了甲、乙两组各四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以X表示. (1)如果X=8,求乙组同学植树棵数的平均数; (2) 记甲组四名同学为A1,A2,A3,A4,乙组四名同学为B1,B2,B3,B4,如果X=9,分别从甲、乙两组中随机选取一名同学,列举这两名同学的植树总棵数为19的所有情形并求该事件的概率.