(本小题满分16分)对于函数,如果是一个三角形的三边长,那么也是一个三角形的三边长,则称函数为“保三角形函数”.对于函数,如果是任意的非负实数,都有是一个三角形的三边长,则称函数为“恒三角形函数”.(Ⅰ)判断三个函数“(定义域均为)”中,哪些是“保三角形函数”?请说明理由;(Ⅱ)若函数是“恒三角形函数”,试求实数的取值范围;(Ⅲ)如果函数是定义在上的周期函数,且值域也为,试证明:既不是“恒三角形函数”,也不是“保三角形函数”.
在平面直角坐标系xOy中,已知椭圆C:的离心率为,且过点,过椭圆的左顶点A作直线轴,点M为直线上的动点,点B为椭圆右顶点,直线BM交椭圆C于P.(1)求椭圆C的方程;(2)求证:;(3)试问是否为定值?若是定值,请求出该定值;若不是定值,请说明理由.
如图,有一段河流,河的一侧是以O为圆心,半径为米的扇形区域OCD,河的另一侧是一段笔直的河岸l,岸边有一烟囱AB(不计B离河岸的距离),且OB的连线恰好与河岸l垂直,设OB与圆弧的交点为E.经测量,扇形区域和河岸处于同一水平面,在点C,点O和点E处测得烟囱AB的仰角分别为,和.(1)求烟囱AB的高度;(2)如果要在CE间修一条直路,求CE的长.
如图,四边形为矩形,四边形为菱形,且平面⊥平面,D,E分别为边,的中点.(1)求证:⊥平面;(2)求证:DE∥平面.
已知向量,,.(1)若⊥,求的值;(2)若∥,求的值.
(本小题满分13分)设函数.(Ⅰ)若函数在区间上是单调递增函数,求实数的取值范围;(Ⅱ)若函数有两个极值点,且,求证:.