(本小题满分13分)已知椭圆E的中心在坐标原点,焦点在x轴上,离心率为,且椭圆E上一点到两个焦点距离之和为4;是过点P(0,2)且互相垂直的两条直线,交E于A,B两点,交E交C,D两点,AB,CD的中点分别为M,N。(1)求椭圆E的方程;(2)求k的取值范围;(3)求的取值范围。
(本小题满分12分)已知向量a=(1,1),b=(1,0),c满足a·c=0,且|a|=|c|,b·c>0(1)求向量c;(2)若映射f:(x,y)→(x′,y′)=xa+yc;①求映射f下(1,2)的原象;②若将(x,y)作点的坐标,问是否存在直线使得直线上任一点在映射f的作用下,仍在直线上,若存在求出的方程,若不存在说明理由.
(本小题满分10分)设函数f(x)=2cos2x+2sinxcosx-1(x∈R)的最大值为M,最小正周期为T.(1)求M、T;(2)10个互不相等的正数xi满足f(xi)=M,且xi<10π(i=1,2,…,10),求x1+x2+…+x10的值.
(满分10分)某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品还需再向总公司交元()的管理费,预计当每件产品的售价为元()时,一年的销售量为万件. (1)求分公司一年的利润(万元)与每件产品的售价的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润最大,并求出的最大值
(满分10分)已知定义在上的函数其中为常数。(1)若是函数的一个极值点,求的值;(2)若函数在区间上为增函数,求的取值范围
(满分10分)设函数(1) 当时,求函数的极值; (2) 当时,求函数在定义域内的单调性.