已知等差数列{an}满足:an+1>an(n∈N*),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项.(1)分别求数列{an}、{bn}的通项公式;(2)设Tn=(n∈N*),若Tn+<c(c∈Z)恒成立,求c的最小值.
已知命题:函数是上的减函数;命题:不等式恒成立.若是真命题,求实数的取值范围.
已知椭圆,过左焦点的直线与椭圆交于、两点,且的周长为;过点且不与轴垂直的直线与椭圆相交于、两点.(1)求椭圆的方程;(2)求的取值范围;(3)若点关于轴的对称点是,证明:直线与轴相交于定点.
如图,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(),B()均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)当PA与PB的斜率存在且倾斜角互补时,求的值及直线AB的斜率.
如图,在四棱锥中,底面为菱形,其中,.(1)求证:(2)若平面平面,求二面角的正切值.
某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100]. (1)求图中a的值; (2)根据频率分布直方图,估计这100名学生语文成绩的平均分; (3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示, 求数学成绩在[50,90)之外的人数.