已知等差数列{an}满足:an+1>an(n∈N*),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项.(1)分别求数列{an}、{bn}的通项公式;(2)设Tn=(n∈N*),若Tn+<c(c∈Z)恒成立,求c的最小值.
.(本题满分12分)[已知数列满足()(1)求的值;(2)证明数列是等比数列,并求出数列的通项公式;(3)若数列满足(),求数列的前项和
二次函数满足。(1)求函数的解析式;(2)在区间上,的图象恒在的图象上方,试确定实数的取值范围。
(本题满分12分)已知向量,函数,且图象上一个最高点的坐标为,与之相邻的一个最低点的坐标为.(Ⅰ)求的解析式;(Ⅱ)在△ABC中,是角A、B、C所对的边,且满足,求角B的大小以及的取值范围.
(本题满分12分)已知△ABC的顶点,,其中0<<.(Ⅰ)若,求角的值;(Ⅱ)若的面积为,求的值
(本题满分10分)设圆内有一点,为过点的直线。(1) 当直线的倾斜角为时,求弦的长(2) 当点为弦的中点时,求直线的方程