(本小题满分12分)已知函数.(I)求的单调区间;(II)求证:不等式恒成立.
设命题,若同时为假命题,求x的取值集合.
在平面直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐V标方程为,M,N分别为曲线C与x轴、y轴的交点.(1)写出曲线C的直角坐标方程,并求M,N的极坐标;(2)求直线OM的极坐标方程.
设函数2|x-3|+|x-4|.(1)求不等式的解集;(2)若不等式的解集不是空集,求实数a的取值范围.
已知的导函数的简图,它与轴的交点是(0,0)和(1,0),又(1)求的解析式及的极大值.(2)若在区间(m>0)上恒有≤x成立,求m的取值范围.
已知双曲线C:离心率是,过点,且右支上的弦过右焦点.(1)求双曲线C的方程;(2)求弦的中点的轨迹E的方程;(3)是否存在以为直径的圆过原点O?,若存在,求出直线的斜率k 的值.若不存在,则说明理由.