已知的导函数的简图,它与轴的交点是(0,0)和(1,0),又(1)求的解析式及的极大值.(2)若在区间(m>0)上恒有≤x成立,求m的取值范围.
如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点. (Ⅰ)求证AM//平面BDE; (Ⅱ)求二面角A-DF-B的大小; (Ⅲ)试在线段AC上确定一点P,使得PF与BC所成的角是60°.
已知:以点C (t, )(t∈R , t ≠ 0)为圆心的圆与轴交于点O, A,与y轴交于点O, B,其中O为原点. (Ⅰ)求证:△OAB的面积为定值; (Ⅱ)设直线y = –2x+4与圆C交于点M, N,若|OM| = |ON|,求圆C的方程.
已知函数是定义在上的奇函数,当时,有(其中为自然对数的底,). (1)求函数的解析式; (2)设,,求证:当时,; (3)试问:是否存在实数,使得当时,的最小值是3?如果存在,求出实数的值;如果不存在,请说明理由.
设函数,其中. (1)当时,求在曲线上一点处的切线方程; (2)求函数的极值点。
已知数列的前项和为,且.数列为等比数列,且,. (1)求数列,的通项公式; (2)若数列满足,求数列的前项和.