在△ABC中,分别为角A,B,C的对边,设,(1)若,且B-C=,求角C.(2)若,求角C的取值范围.
甲乙两个班级均为40人,进行一门考试后,按学生考试成绩及格与不及格进行统计,甲班及格人数为36人,乙班及格人数为24人. (1)根据以上数据建立一个的列联表;(2)试判断成绩与班级是否有关? 参考公式:;
已知函数在及处取得极值. (1)求、的值;(2)求的单调区间.
以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐极系,并在两种坐极系中取相同的长度单位.已知直线的极坐标方程为(),它与曲线(为参数)相交于两点A和B,求AB的长.
已知椭圆:经过点,其离心率. (1)求椭圆的方程; (2)过坐标原点作不与坐标轴重合的直线交椭圆于两点,过作轴的垂线,垂足为,连接并延长交椭圆于点,试判断随着的转动,直线与的斜率的乘积是否为定值?说明理由.
已知函数,函数的导函数,且,其中为自然对数的底数. (1)求的极值; (2)若,使得不等式成立,试求实数的取值范围;