(本小题满分10分)已知等比数列{an}中,Sn为其前n项和,且a1+a3=5,S4=15,设bn=+,求数列{bn}的前n项和Tn .
已知函数. (1)求证:在上是单调递增函数(用定义证明); (2)若在上的值域是,求的值.
若集合和. (1)当时,求集合; (2)当时,求实数的取值范围.
已知椭圆:的离心率,原点到过点,的直线的距离是. (Ⅰ)求椭圆C的方程; (Ⅱ)设动直线与两定直线和分别交于两点.若直线总与椭圆有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.
已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过两点. (Ⅰ)求椭圆的方程; (Ⅱ)若平行于的直线交椭圆于两个不同点,直线与的斜率分别为,试问:是否为定值?若是,求出此定值;若不是,说明理由.
已知过原点的动直线与圆相交于不同的两点,. (Ⅰ)求线段的中点的轨迹的方程; (Ⅱ)是否存在实数,使得直线与曲线只有一个交点:若存在,求出的取值范围;若不存在,说明理由.