已知 (1)最小正周期及对称轴方程; (2)已知锐角的内角的对边分别为,且 ,,求边上的高的最大值.
在直三棱柱中,平面,其垂足落在直线上.(Ⅰ)求证:;(Ⅱ)若,,为的中点,求三棱锥的体积.
某商场为刺激消费,拟按以下方案进行促销:顾客每消费500元便得到抽奖券一张,每张抽奖券的中奖概率为,若中奖,商场返回顾客现金100元.某顾客现购买价格为2300的台式电脑一台,得到奖券4张.(Ⅰ)设该顾客抽奖后中奖的抽奖券张数为,求的分布列;(Ⅱ)设该顾客购买台式电脑的实际支出为(元),用表示,并求的数学期望.
(I)当a⊥b时,求x值的集合;
在中,的对边分别为,向量,.(Ⅰ)若向量,求满足的角的值;(Ⅱ)若,试用角表示角与;(Ⅲ)若,且,求的值.
在⊿ABC中,已知AC=5,BC=1,(1)求边AB的值;(2)求sin(B-C)的值。