(本小题满分12分)某运动员进行20次射击练习,记录了他射击的有关数据,得到下表:
(1)求此运动员射击的环数的平均值;(2)若将表中某一环数所对应的命中次数作为一个结果,在四个结果(2次、7次、8次、3次)中,随机取2个不同的结果作为基本事件进行研究,记这两个结果分别为次、次,每个基本事件为,求事件的概率。
(本小题满分14分)已知函数的图象上。 (1)求数列的通项公式; (2)令求数列 (3)令证明:。
(本小题满分14分)在直角坐标系中,以为圆心的圆与直线相切. (Ⅰ)求圆的方程; (Ⅱ)如果圆上存在两点关于直线对称,求的值. (Ⅲ)已知、,圆内的动点满足,求的取值范围.
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为。 (1)请将上面的列联表补充完整; (2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由; (3)已知喜爱打篮球的10位女生中,还喜欢打羽毛球,还喜欢打乒乓球,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求和不全被选中的概率. 下面的临界值表供参考:
(参考公式:,其中)
右图为一简单组合体,其底面ABCD为正方形,平面,,且="2" . (1)求四棱锥B-CEPD的体积; (2)求证:平面.
已知复数,,且. (1)若且,求的值; (2)设=,求的最小正周期和单调减区间.