(本题满分12分.)在锐角三角形中,边a,b是方程的两根,角A,B满足,求角C的度数,边c的长度及三角形ABC的面积
如图,在四棱锥中,底面为菱形,,为的中点。(I)点在线段上,,试确定的值,使平面;(II)在(I)的条件下,若平面平面ABCD,求二面角的大小。
已知的三个内角A、B、C所对的三边分别是a、b、c,平面向量,平面向量(I)如果求a的值;(II)若请判断的形状.
已知椭圆的中心为原点 O ,长轴在 x 轴上,上顶点为 A ,左、右焦点分别为 F 1 , F 2 ,线段 O F 1 , O F 2 的中点分别为 B 1 , B 2 ,且 △ A B 1 B 2 是面积为4的直角三角形.
(Ⅰ)求该椭圆的离心率和标准方程; (Ⅱ)过 B 1 作直线交椭圆于 P , Q , P B 2 ⊥ Q B 2 ,求 △ P B 2 Q 的面积.
已知直三棱柱 A B C - A 1 B 1 C 1 中, A B = 4 , A C = B C = 3 , D 为 A B 的中点.
(Ⅰ)求异面直线 C C 1 和 A B 的距离; (Ⅱ)若 A B 1 ⊥ A 1 C ,求二面角 A 1 - C D - B 1 的平面角的余弦值.
设函数 f ( x ) = A sin ( ω x + φ ) (其中 A > 0 , ω > 0 , - π < φ < π )在 x = π 6 处取得最大值2,其图象与轴的相邻两个交点的距离为 π 2 .
(I)求 f ( x ) 的解析式;
(II)求函数 g ( x ) = 6 cos 4 x - sin 2 x - 1 f ( x + π 6 ) 的值域.